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Summary

Objective: HIV treatment failure is commonly associated with drug resistance and the
selection of a new regimen is often guided by genotypic resistance testing. The
interpretation of complex genotypic data poses a major challenge. We have developed
artificial neural network (ANN)models that predict virological response to therapy from
HIVgenotypeandother clinical information.Herewecompare theaccuracyofANNwith
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1. Introduction

Despite the approval of more than 20 antiretroviral
drugs, HIV treatment failure due to drug resistance
still occurs. HIV genotyping is recommended by a
range of HIV treatment guidelines and is commonly
employed to help the selection of a new regimen to
re-establish viral suppression [1—3]. However, the
complexity of resistance patterns and the expanding
range of therapeutic options available have made
the interpretation of genotype results in order to
optimise virological treatment response extremely
challenging [1]. A number of interpretation systems
have been developed that relate HIV genotype to
single antiretroviral drug susceptibility using differ-
ent ‘rules’ or algorithms [for example, 4—7] and
relational databases have been used to predict
resistance to specific drugs by matching a test gen-
otype with archived genotypic and phenotypic data
[8,9]. There is no recognised standard interpreta-
tion system and different systems can produce dif-
ferent results from the same genotype [10—13].

Several groups have explored the use of bioinfor-
matics to address the challenges of genotype inter-
pretation and response prediction [14 for a review].

For example, artificial neural networks (ANN) [15],
decision trees [16], support vector machines (SVM)
[9] or phenotype matching in relational databases
[17] have all been used to predict phenotype from
genotype. Other groups have gone further to relate
the predicted phenotype of individual drugs to vir-
ological response. However, the relationship
between phenotype and response to combination
therapy is not well characterized and attempting to
infer response from genotype via the intermediate
step of predicted phenotype has serious limitations
[18]. Most of the groups that have attempted this
have related predicted phenotype to a categorical
prediction of response, with cut-offs in predicted
fold-changes in phenotypic sensitivity linked to clin-
ical response [e.g. 19]. However, in terms of poten-
tial clinical utility, a strong case can be made for
predicting response to combination therapy (rather
than individual drugs) as a continuous variable [20],
directly from genotype. Given the complexity of the
drug and genotype permutations the main obstacle
facing this approach is the size of the dataset
required [21].

The HIV Resistance Response Database Initiative
(RDI) is a not-for-profit organization set up to
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alternativemodellingmethodologies, random forests (RF) and support vectormachines
(SVM).
Methods: Data from 1204 treatment change episodes (TCEs) were identified from the
HIV Resistance Response Database Initiative (RDI) database and partitioned at random
into a training set of 1154 and a test set of 50. The training set was then partitioned
using an L-cross (L = 10 in this study) validation scheme for training individual compu-
tational models. Seventy six input variables were used for training the models: 55
baseline genotype mutations; the 14 potential drugs in the new treatment regimen;
four treatment history variables; baseline viral load; CD4 count and time to follow-up
viral load. The output variable was follow-up viral load. Performance was evaluated in
terms of the correlations and absolute differences between the individual models’
predictions and the actual DVL values.
Results: The correlations (r2) between predicted and actual DVL varied from 0.318 to
0.546 for ANN, 0.590 to 0.751 for RF and 0.300 to 0.720 for SVM. The mean absolute
differences varied from 0.677 to 0.903 for ANN, 0.494 to 0.644 for RF and 0.500 to 0.790
for SVM. ANN models were significantly inferior to RF and SVM models.

The predictions of the ANN, RF and SVM committees all correlated highly signifi-
cantly with the actual DVL of the independent test TCEs, producing r2 values of 0.689,
0.707 and 0.620, respectively. The mean absolute differences were 0.543, 0.600 and
0.607 log10 copies/ml for ANN, RF and SVM, respectively. There were no statistically
significant differences between the three committees.

Combining the committees’ outputs improved correlations between predicted and
actual virological responses. The combination of all three committees gave a correla-
tion of r2 = 0.728. The mean absolute differences followed a similar pattern.
Conclusions: RF and SVMmodels can produce predictions of virological response to HIV
treatment that are comparable in accuracy to a committee of ANN models. Combining
the predictions of different models improves their accuracy somewhat.

This approach has potential as a future clinical tool and a combination of ANN and RF
models is being taken forward for clinical evaluation.
# 2009 Elsevier B.V. All rights reserved.
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establish a large clinical database and develop
bioinformatic techniques to define the relationships
between HIV resistance and virological response to
treatment. It is hoped that this approach might
potentially overcome some of the limitations of
current interpretation systems [22]. The develop-
ment of the database is an international collabora-
tion and data from more than 50,000 HIV patients
have already been provided by a variety of private
and public research groups.

The ultimate aim is to develop computational
models that are able to predict treatment
response accurately from genotype and other
clinically relevant information, which will then
be made freely accessible as an aid to treatment
selection.

We recently demonstrated that ANN models
trained with datasets from multiple clinical sources
can be accurate predictors of virological response to
combination therapy [23]. Here we tested the accu-
racy of two alternative computation modelling
methods, namely random forests (RF) and SVM,
and compare their performance individually and
in combination with that of ANN models, using
the same dataset.

The principle of RF is to grow many decision
trees in parallel. For a given sample, votes are
carried out over all the trees in the forest. The
individual trees are built using different sets of
samples from the original training dataset. In each
node of a tree, the splitting feature is selected
from a randomly chosen sample of features. In RF
modelling, the training datasets of the individual
trees are built by bootstrap replication, leaving
about one-third of the samples out of the boot-
strap sample, which are used for validation. The
injection of randomness makes RF highly resistant
to over-fitting [24,25]. A disadvantage of RF is that
the model is complex and cannot be visualised like
a single tree [25].

The principle of SVM is to map the data into a
high-dimensional feature space and then perform
linear regression. SVM searches for a global solution
and does not control model complexity by keeping
the number of input variables small [26,27]. It is
considered more resistant to ‘over-fitting’ based on
the training dataset and, therefore, potentially
more generalisable to new data [28]. The drawback
of SVM is its high algorithmic complexity [29].

2. Materials and methods

2.1. Data

The basic package of information that is used for the
training of the RDI’s models is the treatment change
episode (TCE) as illustrated in Fig. 1 [30]. This com-
prises key information required by themodels from a
patient who has had a new treatment started, in
order to develop a prediction of virological response.
It includes baseline genotype, viral load, CD4+ T-
lymphocyte (CD4) count and other information as
well as the follow-up viral load value: the response
variable that themodels are being trained to predict.

Based on the results of previous studies, the RDI
applied the following criteria to the TCEs in order to
optimise the training andperformanceof themodels:

1. A baseline genotype must be available from a
plasma sample taken no more than 12 weeks
prior to treatment change date

2. Baseline viral load no more than 8 weeks prior to
treatment change date

3. Baseline CD4 count no more than 12 weeks prior
to treatment change date

4. Details of at least one previous treatment avail-
able

5. Follow-up viral load available from between 4
and 48 weeks after treatment change date.

Three methods for modelling treatment response in HIV 65

Figure 1 Treatment change episode (TCE).
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Results of previous studies have shown that
including multiple TCEs from the same patient-
treatment change, using follow-up viral loads at
different times enhances the accuracy of prediction
of the models. However, as a precaution against
over-training, the number of TCEs permitted from
a single treatment change, using different follow-up
viral loads was restricted to a maximum of three,
eachmore than 28 days apart. The RDI database has,
on average, approximately two TCEs per treatment
change under this rule and this was reflected in data
used in this study.

2.2. Input variables

Seventy six input variables were used in the training
of all the models:

a. 55 baseline genotypic mutations (coded as binary
variables where 1 = the mutation was present
and 0 = it was not). The mutations were selected
on the basis of frequency in the RDI database,
their relative impact on treatment responses in
previous multivariate analyses (data on file) and
the HIV resistance literature (HIV reverse tran-
scriptase codons: M41L, E44D, A62V, K65R, D67N,
69 insert, T69D/N, K70R, L74V, V75I, F77L, A98G,
L100I, L101I/E, K103N, V106A, V108I, Y115F,
F116Y, V118I, Q151M, V179D, Y181C, M184V,
Y188C/L/H, G190S/A, L210W, T215Y, T215F,
K219Q/E, P236L; HIV protease mutations:
L10F/I/R/V, K20M/R, L24I, D30N, V32I, L33F,
M36I, M46I/L, I47V, G48V, I50V, I50L, F53L,
I54V/L, L63P, A71V/T, G73S/A, V77I, V82A/F/S,
V82T, I84V, I84A, N88S, L90M)

b. Drugs in the new combination regimen (coded as
binary variables where 1 = the drug was used in
the regimen and 0 = it was not). All 14 drugs
appearing in the training and test datasets were

covered (zidovudine, didanosine, stavudine,
abacavir, lamivudine, tenofovir, efavirenz,
nevirapine, indinavir, nelfinavir, ritonavir as a
protease inhibitor booster, saquinavir, amprena-
vir, lopinavir)

c. Four treatment history variables (binary vari-
ables coding for any historical exposure to zido-
vudine, lamivudine, any non-nucleoside reverse
transcriptase inhibitor (NNRTI) and any protease
inhibitor (PI)

d. Baseline viral load (log copies HIV RNA/ml)
e. Baseline CD4 count (cells/ml)
f. Time to follow-up viral load (number of days),
all as described previously [4].

The output variable was follow-up viral load (log
copies RNA/ml) [4].

2.3. Development of computational
models

The development of computational models consists
of the following phases (Fig. 2): (a) partitioning the
data, (b) training individual models using ANN, RF,
and SVM machine learning methods, (c) forming
model committees for each of ANN, RF and SVM
methods, and (d) combining the outputs of the
committees.

2.3.1. Data partitioning
The data used in this study comprised 1204 TCEs
taken from the RDI database. Because of the large
number of input variables and limited TCEs available
at the time, the size of the training dataset was
maximised while retaining an independent test set
sufficient for statistical testing. Therefore 50 test
TCEs and 1154 training TCEs were selected, at ran-
dom except for the constraint that TCEs from the
same patient could not appear in both the training
and test datasets. The 1154 TCEs in the training set
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Figure 2 The structure of the computational models.
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were partitioned using an L-cross (L = 10 in this
study) validation scheme for training individual
computational models.

2.3.2. ANN models
ANN models were trained using sub-training data-
sets, which were assumed to be independently
drawn from the joint distribution of (X,Y) and com-
prised N(m + 1) patterns (xk,yk), k = 1, 2,. . .,N, Y is
the observed follow-up viral load. The predicted
follow-up viral load was estimated using (1).

oðx;wÞ ¼ gð
XH

j¼1
w0 jh jÞ (1)

hj ¼ sð
Xm

i¼1
w jixi þ w jÞ; j ¼ 1; 2; . . . ;H (2)

e ¼ 1

2

XN

k¼1
½oðxk;wÞ � yk�2 (3)

sðxÞ ¼ 1

1þ e�x
(4)

c̄ðxÞ ¼ 1

L

XL

l¼1
olðx;wÞ (5)

where x represents m observed input variables, w0 j

was the output weight from a hidden node j to an
output node and g was a linear output function. The
value of a hidden layer node hj, j = 1, 2,. . .,H (H was
the number of hidden nodes) was given by (2), w ji

was input weight from an input node i to a hidden
node j, w j was threshold weight from an input node
that had a constant value 1 to a hidden node j, xiwas
the value at the input node i, representing either a
mutation (0/1) or a drug (0/1), or a treatment
history variable (0/1), or the baseline viral load (a
real number), or the baseline CD4 count (an inte-
ger), or the time to follow-up (a real number), and s

was a sigmoid function and was defined by Eq. (4).
The weights between nodes were obtained using a
back-propagation algorithm to minimise the error
function defined in Eq. (3) by iteratively adjusting
the weights between the interconnections [15,23].
The predicted follow-up viral load from the com-
mittee of ANN model was estimated by Eq. (5).

2.3.3. RF models
A random forest model is a group of tree predictors
f(x;ut), t = 1, 2,. . .,T, where x representsm observed
input variables with associated random vector X and
ut are independent and identically distributed ran-
dom vectors. The training dataset was assumed to
be independently drawn from the joint distribution
of (X, Y) and comprised K(m + 1) patterns (xi, yi),
i = 1, 2,. . .,N (N is sample size for each tree), which
was a sub set of N(m + 1) patterns used in the ANN

modelling. The random forest prediction was calcu-
lated by Eq. (6).

fðxÞ ¼ 1

T

XT

t¼1
fðx; utÞ (6)

According to the law of large numbers,
EX,Y(Y � f(X))2! EX,Y(Y � Euf(X;u))

2 if T!1. The
training procedure of RF models included the fol-
lowing steps: Firstly, a bootstrap sample was drawn
from the whole training dataset. Secondly, a tree
was built for each bootstrap sample at each node,
the best split among a randomly selected subset of
input variables was chosen. The tree building was
stopped when the tree was grown to the maximum
size (the number of cases in a node is below a
threshold of 5). Thirdly, these steps were repeated
to generate a sufficiently large number (a variable
from 200 to 500) of trees. The RF model was trained
using the random forest package in R [31]. The
predicted follow-up viral load from the committee
of RF models was estimated by Eq. (7).

r̄ðxÞ ¼ 1

L

XL

l¼1
flðxÞ (7)

2.3.4. SVM models
The same N(m + 1) patterns (xk, yk) as used in the
ANN modelling were utilised to train individual SVM
models. For an e-insensitive loss function, the SVM
model parameters were determined by Eq. (8)

max
a;b

Wða;bÞ ¼ max
a;b
ð
XN

i¼1
aiðyi � eÞ � biðyi þ eÞ

� 1

2

XN

i¼1

XN

j¼1
ðai � biÞða j � b jÞK

�ðxi; x jÞÞ (8)

with constraints, defined by Eq. (9),
0 � ai; bi � C; i ¼ 1; 2; . . . ;N
XN

i¼1
ðai � biÞ ¼ 0

(9)

where the kernel function is defined by Eq. (10)

Kðxi; x jÞ ¼ e�g xi�x jk k2 (10)

The follow-up viral load predicted by the SVM
model is given by Eq. (11)

sðxÞ ¼
XV

p¼1
ða�P � b�pÞKðx p; xÞ (11)

where V is the number of support vectors. The SVM
models were trained using LIBSVM (http://
www.csie.ntu.edu.tw/�cjlin/libsvm/). The pre-
dicted follow-up viral load from the committee of
SVM models was estimated by Eq. (12).
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s̄ðxÞ ¼ 1

L

XL

l¼1
slðxÞ (12)

2.3.5. Testing the models
The performance of the models was assessed by
providing them with the input data from the inde-
pendent test dataset and then comparing the pre-
dictions of themodels with the actual change in viral
load (DVL) from those test TCEs. The comparison
was made in terms of the correlation between
actual and predicted DVL (r2 generated from Pear-
son product—moment correlations) and the mean
absolute difference between the actual and the
predicted DVL. The performance of the ANN, RF
and SVM committees was assessed using the com-
mittee average prediction for each TCE [23].

2.3.6. Combining model outputs
In addition to comparing the accuracy of the pre-
dictions of the three machine learning methods,
their outputs were combined in three different
ways: (a) the mean of the predictions from ANN,
RF and SVM committee models, m ¼

P3
i¼1 mi=3,

where, mi, i = 1,2,3, represent the predicted viral
load from the ANN, RF, and SVM committee models,
respectively, (b) the weighted mean by the inverse
variance of the differences between the predicted
and actual DVL values in the test dataset,
m ¼

P3
i¼1 wimi=

P3
i¼1 wi, where wi ¼ 1=i, vi is the

variance and (c) the weighted mean by the r2 values
between the predicted and the actual viral loads,
m ¼

P3
i¼1 wimi=

P3
i¼1 wi, where wi ¼ R2

i .

2.4. Estimate of confidence intervals

The output of the computational models is the
predicted follow-up viral load for a patient with a

specific set of baseline variables, including HIV
genotype. In order to aid decision-making in select-
ing a new therapeutic regimen for the patient, it is
important to provide uncertainty estimates (for
example, confidence intervals) associated with
the predictions of virological response. Suppose that
t = t(x) is the true viral load we want to approximate
and that D ¼ fðxk; ykÞ; k ¼ 1; 2; . . . ; ng is an indepen-
dent test dataset, where y = t + e, e is the noise with
E(e) = 0. The mean squared error of the model pre-
dictions o is defined by MSE ¼ 1

n

Pn
i¼1 ðyi � oiÞ2. The

expectation of MSE can be expressed as

EðMSEÞ ¼ 1

n

Xn

i¼1
Eðyi � oiÞ2

¼ 1

n

Xn

i¼1
ðEðyi � tiÞ2 þ Eðti � oiÞ2Þ

¼ 1

n

Xn

i¼1
ðEðe2Þþ Eðti � EðoiÞÞ2 þðEðoiÞ � oiÞ2Þ

The first term in the right side of the equation is
the variance of noise, the second term is the model
bias squared, and the third term is the variance of
the model predictions. The variance of noise is
independent of the computational models. It can
be estimated by training an auxiliary computational
model on the residuals of the committee predictions
[32]. However, this is computationally time-consum-
ing because it involves training many models to
ensure a reliable estimate. The model bias vanishes
completely if the computational models are per-
fectly trained. Most re-sampling based techniques
neglect the contribution of the model bias to the
total error variance [32,33]. Themodel variance can
be estimated by a committee of computational
models. In this paper we constructed confidence
intervals for the predicted viral loads based on
the model variance only.

68 D. Wang et al.

Table 1 Performance of individual ANN, RF and SVM models with independent test data.

Correlations (r2) Mean absolute difference scores

ANN RF SVM ANN RF SVM

Model 1 0.380 0.59 0.660 0.859 0.644 0.500
Model 2 0.360 0.625 0.520 0.736 0.640 0.604
Model 3 0.331 0.628 0.370 0.732 0.623 0.732
Model 4 0.352 0.749 0.620 0.735 0.494 0.576
Model 5 0.435 0.654 0.430 0.733 0.639 0.728
Model 6 0.358 0.716 0.300 0.691 0.583 0.790
Model 7 0.546 0.717 0.490 0.730 0.595 0.625
Model 8 0.318 0.666 0.720 0.677 0.632 0.507
Model 9 0.421 0.647 0.630 0.903 0.625 0.553
Model 10 0.436 0.751 0.480 0.772 0.578 0.624

Mean 0.394 0.674 0.522 0.757 0.605 0.624
SD 0.068 0.056 0.135 0.071 0.046 0.098
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3. Results

The correlations and absolute differences between
the individualmodels’ predictions and theactualDVL
valuesare summarised inTable1.These results reveal
marked differences between the different methods.
The r2 of the individual ANNmodels varied from0.318
to 0.546, with a mean (SD) of 0.394 (0.068) and a
coefficient of variationof 18%.The r2 of the individual
RF models varied from 0.590 to 0.751, with a mean
(SD) of 0.674 (0.056) and a coefficient of variation of
8%. The r2 of the individual SVM models varied from
0.300to0.720,withamean(SD)of0.522(0.135)anda
coefficient of variation of 26%. Individual SVM and
ANN models varied more in the accuracy of their
predictions than did the RF models.

The mean absolute differences between the
actual DVL values and the predictions by individual
ANNmodels varied from 0.677 to 0.903, with a mean
(SD) of 0.757 (0.071) and a coefficient of variation of
9%. For the RFmodels this value varied from 0.494 to
0.644, with a mean (SD) of 0.605 (0.046) and a
coefficient of variation of 8%. For the SVM models,
this value varied from 0.500 to 0.790, with a mean
(SD) of 0.624 (0.098) and a coefficient of variation of
16%. Again on average, the RF models gave the
smallest variations. However, the variations
between the ANN models and the RF models were

not markedly different. In summary, the perfor-
mance of the individual ANN models was signifi-
cantly inferior to that of individual RF and SVM
models in terms of the correlations ( p < 0.0001
and p < 0.05, respectively) and absolute differ-
ences (p < 0.0001 and p < 0.01) between predicted
and actual viral load values.

The predictions of the ANN, RF and SVM commit-
tees all correlated highly significantly with the
actual DVL of the independent test TCEs, producing
r2 values of 0.689, 0.707 and 0.620, respectively
(p < 0.00001). The scatter plots of predicted versus
actual DVL values are presented in Fig. 3. The mean
absolute differences between the models’ predic-
tions and the actual DVL values were 0.543, 0.600
and 0.607 log10 copies/ml for ANN, RF and SVM,
respectively. The performance measures for the
model committees are summarised in Table 2. The
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Table 2 Summary of results for ANN, RF and SVM
committees.

Independent test data

r2 Mean absolute difference

ANN 0.689 0.543
RF 0.707 0.600
SVM 0.620 0.607

Figure 3 Actual versus predicted viral load change for an independent test dataset.
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performance of the ANN committee in terms of the
r2 is comparable to that of the RF committee and
numerically superior to that of the SVM committee.
There were no statistically significant differences
between the three modelling methods (ANOVA,
F = 0.42, d.f. = 2, p = 0.74). However, in contrast
to ANN, the performance of the individual SVM
and particularly RF models was not markedly dif-
ferent to that of the committees.

The results of combining computational models
using differently weighted methods are summarised
in Table 3. For the equally weighted method, com-
bining the committees’ outcomes produced differ-
ent correlations between predicted and actual
virological responses. The r2 varied from 0.686 for
a combination of RF and SVM models up to 0.747 for
a combination of RF and ANN models. The combina-
tion of predictions from all three committee models
gave a correlation of r2 = 0.728. The mean absolute
differences between predicted and actual virologi-
cal responses followed a similar pattern as the
correlations, ranging from 0.543 log copies for a
combination of RF and ANN models up to 0.579 log
copies for a combination of RF and SVM models. The
results obtained using r2 weighted and the inverse
variance weighted methods were not markedly dif-
ferent to those obtained using the equally weighted
method as shown in Table 3.

There were no statistically significant differ-
ences between the predictions from each of the
four combinations of models’ outputs or between
the combined outputs and the individual outputs in
terms of absolute differences between predicted
and actual virological responses (F = 0.32,
p = 0.93). Overall, the combined predictions of
the RF and ANN models achieved the highest corre-
lation with actual responses. Comparison of the
absolute difference between predicted and actual
responses for this combination of models
approached statistically superiority over those of
the SVM model, which produced the least accurate
predictions ( p = 0.086).

Table 4 lists the actual follow-up viral loads, the
predicted follow-up viral loads and 95% confidence
intervals relating to the combined predictions of the

ANN and RF committees for the independent test
dataset. In 44 out of 50 patients (88%), the predicted
95% confidence intervals included the actual follow-
up viral loads. For three of the remaining six
patients, the differences between the actual fol-
low-up viral loads and the upper or lower limit of the
predicted 95% confidence intervals were less than or
equal to the 0.1 log10 copies/ml. For the other three
patients, the differences between the actual fol-
low-up viral loads and the upper or lower limit of the
predicted 95% confidence intervals were less than or
equal to the 0.2 log10 copies/ml. The results
obtained from a combination of ANN, RF, and SVM
committee models are shown in Table 5. The pre-
dicted 95% confidence intervals were similar to
those obtained by a combination of ANN and RF
committee models, albeit slightly wider. This is in
accordance with the performance of these com-
bined models as shown in Table 3.

In order to test if the models performed differ-
ently for patients with a short versus a long time to
follow-up, the 50 test TCEs were divided into two
sets of 25: those with the shortest time to follow-up
(range = 4—13 weeks, mean = 8) and those with the
longest the longest (range = 13—47 weeks,
mean = 26). The performance of the models was
found to be comparable for both groups. The corre-
lations between the combined predictions and the
actual DVL yielded an r2 value (mean absolute dif-
ference score) of 0.69 (0.54) and 0.76 (0.56),
respectively for the TCEs with shorter and longer
follow-up times.

4. Discussion

In terms of the main measure of the correlation
between predicted and actual virological response,
individual ANN models performed significantly
worse in their predictions of virological response
to HIV therapy than RF and SVM models and their
predictions were significantly more variable that
were those of RF models.

The use of a model committee substantially
improved the accuracy of the ANN predictions.

70 D. Wang et al.

Table 3 Summary of results for combined models.

Equally weighted r2 weighted IV weighted

r2 Mean absolute
difference

r2 Mean absolute
difference

r2 Mean absolute
difference

ANN and RF 0.747 0.543 0.747 0.542 0.746 0.543
ANN and SVM 0.701 0.551 0.703 0.549 0.704 0.548
RF and SVM 0.686 0.579 0.690 0.580 0.690 0.580
ANN, RF and SVM 0.728 0.547 0.731 0.546 0.730 0.547
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For example, the r2 of the ANN committee was 0.689
while the average of the r2 of the individual ANN
models was just 0.394. The use of a committee also
improved the predictions of RF and SVM somewhat.
In fact, this is not surprising as the correlations
between the actual and predicted values made by
averaging the predictions of individual models of
each TCE is always greater than or equal to the
average of the correlations between the actual viral
load values and the predictions for individual mod-
els. However the improvement seen with commit-
tees of RF and SVM was not as great as for ANN, with
the committees failing to out-perform the best
individual models. As a result, the ANN committee
was comparable in accuracy to the RF committee
(although not as accurate as four of the individual RF
models) and numerically but not significantly super-
ior to the SVM committee.

The smallest coefficient of variation was
achieved in the case of the RF models, indicating
that the individual RF models were quite stable in
predicting virological response. This may be
because the individual RF models were composed
of many different tree models. These tree models
were built using different sets of samples from the
original training dataset. In each node of a tree, the
splitting feature was selected from a randomly

chosen sample of features. In RF modelling, the
training datasets of the individual trees were built
by bootstrap replication, leaving about one-third of
the samples out of the bootstrap sample. It is the
injection of randomness that is likely to have made
the individual RF models highly stable. This is in
accordance with the studies reported by Liaw and
Breiman [24,25]. In contrast, the individual SVM
models gave the largest coefficient of variation.
The correlation between predicted and actual viral
loads was more than 10% worse for the SVM com-
mittee model than for the ANN and RF committee
models, suggesting that SVM may have a poor gen-
eralisability. This is inconsistent with the study
reported by Furey [28], in which SVM was used to
classify cancer tissue samples using microarray
expression data. The discrepancy may be due to
the fact that in the Furey study a hold-one-out test
scheme was used to test the generalisability of SVM
classifiers, while we used an actual independent
test dataset. Nevertheless, it was somewhat surpris-
ing that the SVM models did not perform better than
they did.

Combining the predictions from models trained
using different machine learning methods for each
test case generally improved the correlations
between predicted and actual virological responses
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Table 4 The actual and predicted follow-up viral loads by a combination of ANN and RF models and the 95% CI.

Patient Actual
viral load

Predicted
viral load

95% CI Patient Actual
viral load

Predicted
viral load

95% CI

Low VL Upper VL Low VL Upper VL

1 2.6 2.1 1.7 4.7 26 5.5 4.4 2.5 5.4
2 5.4 4.7 3 5.8 27 1.9 2.4 1.8 2.8
3 1.7 2.5 1.7 3.1 28 1.7 2 1.7 2.5
4 2.7 3.5 1.7 5.2 29 2 2.5 1.7 4.8
5 2.7 2.6 1.8 3.1 30 4.5 3.9 2.6 5.5
6 1.7 2.4 1.7 2.8 31 2.6 2.4 1.7 3.4
7 1.7 2 1.7 2.2 32 5 4.6 2.4 5.8
8 4.5 3.6 2.5 5.6 33 4.9 4 2.3 5.8
9 1.7 2.7 1.8 3.1 34 2.9 3.1 1.8 4.6

10 2.7 2.9 1.8 5 35 2.3 2.7 1.8 4.8
11 4.7 4 2.7 5.5 36 5.9 5.1 3.9 5.7
12 1.9 2.7 1.8 4.1 37 1.7 2.5 1.7 3.8
13 1.7 2.8 1.9 5 38 3.2 3.7 2.3 5.8
14 2.5 3.4 1.7 5.8 39 1.9 1.9 1.7 2.2
15 1.9 2.6 1.7 4.6 40 1.7 2 1.7 3.1
16 2.8 3.5 1.9 5.8 41 2.8 3 1.8 4.2
17 2.3 2.8 1.7 4.8 42 3.2 2.9 1.9 3.5
18 3.5 3.1 1.8 5.2 43 2.1 2 1.7 2.4
19 1.7 2.9 1.7 4.8 44 4.7 4.5 2.7 5.8
20 2.5 2.8 1.7 4.9 45 3.8 4 1.9 5.7
21 5.7 4.6 2.4 5.8 46 5.2 4.7 3.3 5.7
22 5.9 4.9 2.9 5.8 47 1.7 2.9 1.9 5.1
23 2.6 2.9 2.1 3.2 48 2.6 2.8 2.4 3.8
24 2.6 2.8 2 3 49 1.7 1.8 1.7 2
25 2.7 3.7 1.7 5.6 50 1.7 2 1.7 2.3
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to treatment, although this was not statistically
significant. The performance of the combined mod-
els seemed not to be affected by the combination
methods, suggesting that a simple averaging
method could be used to combine different compu-
tational models. The accuracy of the models’ pre-
dictions also appears to be independent of time to
follow-up up to one year. The combination of models
that achieved the highest correlation and smallest
mean absolute difference score was a combination
of RF and ANN. This combination of modelling meth-
ods has been taken forward into clinical testing as a
treatment decision support tool.

The mean absolute difference between the pre-
dictions of the best models and the actual virologi-
cal responses, at approximately 0.5 log HIV RNA/ml,
was comparable to the limit of reproducibility of the
viral load assays in current use. A corollary is that
approximately half of the predictions (44% for the RF
and ANN combined outputs) were out by more than
0.5 log. While this is a concern, reducing this is likely
to require improvements in the assays themselves.
In this, as in previous studies (data on file) the
models were somewhat conservative (making more
under-estimates of virological response than over
estimates). In addition, substantial over-estimates
of responsemay well have been due to poor therapy-

adherence, which is clearly beyond the scope of
such a system.

The clinical utility of models such as these is
arguably more dependent on ranking different regi-
mens accurately in order of virological response,
than on the absolute accuracy of their predictions,
which is why our primary measure of accuracy is the
correlation between predicted and actual response.

The results of confidence interval estimates
revealed that the 95% confidence intervals esti-
mated by the RF committee model were usually
narrower compared to those estimated by ANN or
SVM committee models. This was probably due to
the fact that a RF model consists of a large number
of trees which are trained using different sets of
samples randomly selected with replacement. Due
to the nature of sampling, these tree models might
be highly dependent. This implies that different RF
models may be correlated to some extend and may
suggest that 95% confidence intervals constructed
using the RF committee model alone may be pro-
blematic. However, our results have demonstrated
that using a combination of ANN, RF, and/or SVM
models provides reliable estimates of 95% confi-
dence intervals for the predicted viral loads.

It is possible that construction of confidence inter-
vals by taking into account all the uncertainties,
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Table 5 The actual and predicted follow-up viral loads by a combination of ANN + RF + SVM models the 95% CI.

Patient Actual
viral load

Predicted
viral load

95% CI Patient Actual
viral load

Predicted
viral load

95% CI

Low VL Upper VL Low VL Upper VL

1 2.6 1.9 1.5 4.7 26 5.5 4.3 2.5 5.4
2 5.4 4.7 3.2 5.7 27 1.9 2.5 1.8 3.1
3 1.7 2.5 1.7 3.1 28 1.7 2.1 1.7 2.5
4 2.7 3.4 1.9 5.2 29 2 2.4 1.5 4.8
5 2.7 2.6 1.8 3.1 30 4.5 4 2.6 5.5
6 1.7 2.5 1.7 3 31 2.6 2.5 1.7 3.4
7 1.7 1.8 1.3 2.2 32 5 4.3 2.4 5.7
8 4.5 3.7 2.5 5.2 33 4.9 3.9 2.3 5.6
9 1.7 2.7 1.8 3.1 34 2.9 3 1.8 4.6

10 2.7 2.9 1.8 5 35 2.3 2.8 1.8 4.8
11 4.7 3.8 2.7 5.5 36 5.9 4.9 3.3 5.8
12 1.9 2.7 1.8 3.8 37 1.7 2.6 1.7 3.8
13 1.7 2.6 1.8 4.7 38 3.2 3.6 2.3 5.8
14 2.5 3.2 1.7 5.8 39 1.9 1.8 1.2 2.2
15 1.9 2.6 1.7 4.6 40 1.7 2.1 1.7 3.1
16 2.8 3.4 1.9 5.8 41 2.8 3.1 1.8 3.7
17 2.3 2.8 1.7 4.8 42 3.2 3 1.9 3.5
18 3.5 3 1.8 5.1 43 2.1 1.9 1.2 2.4
19 1.7 2.9 1.7 4.8 44 4.7 4.4 2.7 5.8
20 2.5 2.7 1.7 4.9 45 3.8 3.8 1.9 5.7
21 5.7 4.5 2.4 5.8 46 5.2 4.8 3.3 5.7
22 5.9 5.1 2.9 5.8 47 1.7 3 1.9 3.3
23 2.6 3.1 2.1 3.9 48 2.6 2.9 2.2 3.8
24 2.6 2.7 2 3 49 1.7 1.7 1.2 2
25 2.7 3.6 1.7 5.6 50 1.7 1.7 1.1 2.3
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including model bias and variance of noise, would
give a more accurate estimate. Nevertheless, the
results from this study have shown that in about
90% of cases in the independent test dataset the
95% confidence intervals cover their actual viral
loads, and that in the remaining cases the actual
viral loads fall in windows by enlarging their 95%
confidence intervals by 0.2 log10 copies/ml. This sug-
gests that the variance of noise and model bias
appears to have had, at most, only a small impact
on confidence interval estimates for the predicted
viral loads using a combination of computational
models.

A potential limitation to this study was the size of
the dataset available and, as a result, the compara-
tively small size of the independent test set. We
have since collected additional data from more
recent clinical practice. A search of these data
enabled us to construct an additional test set of
50 TCEs. When the ANN, RF and SVM committees
were tested using these more recent data, perfor-
mance was not significantly different from that
achieved with the original, contemporaneous test
data, although the r2 values were reduced to 0.543,
0.564 and 0.475 compared to 0.689, 0.707 and 0.620
with the original test datasets. As with the original
test data, there were no significant differences
between the different models’ performance but
the trend for SVM models to perform less well than
the other methods was replicated.

Future studies are being planned and undertaken
with larger test sets as we now have larger numbers
of TCEs available for modelling. In addition, as well
as developing new models to predict absolute vir-
ological response to all the available antiretroviral
drugs, we are developing models to estimate the
probability of the viral load falling below the limit of
detection of assays in widespread use (currently 50
copies/ml).

In conclusion, RF and SVM model committees are
able to predict virological response to HIV therapy
with accuracy that does not differ significantly from
that of ANN. Individual RF proved the most accurate
and consistent of the individual models and ANN and
RF committees provided the best combined perfor-
mance. The results of this study provide the basis for
ongoing larger studies and support to the RDI’s drive
to develop a treatment decision tool using a combi-
nation of computational models.
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